Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Magnetism of SmB_2C_2

K. Indoh, H. Onodera, Y. Yamaguchi Institute for Materials Research, Tohoku University, Sendai, 980-8577 JAPAN

 RB_2C_2 (R=Rare earth) with a tetragonal LaB_2C_2 -type crystal structure (space group P4/mbm)*† shows various magnetic properties. Especially, $DyB_2C_2^{\ddagger}$ and $HoB_2C_2^{\S}$ undergo an antiferroquadrupolar (AFQ) and an antiferromagnetic (AFM) ordering. The complicated phenomena caused by the coexistence of AFQ and AFM interactions attract our interests. However, RB_2C_2 with R=Sm, Eu and Yb have not been investigated in detail because it is very difficult (or impossible) to synthesis their compounds. We succeeded recently in growing a single crystal of SmB_2C_2 . The present paper provides the results of magnetization and specific heat measurements on SmB_2C_2 . The two phase transitions were observed around 52 K and 35 K. The phase transition at 52 K is anomalously higher than T_N =46.5 K of GdB_2C_2 , considering the de Genne rule of RB_2C_2 system. the magnetic entropy calculated from specific heat is released about Rln2, which means these transitions involve in a doublet ground state of Sm^{3+} Kramers ion.

^{*}Onimaru et al. J. Phys. Soc. Jpn. 68 (1999) 2287.

[†]Kaneko *et al.* J. Phys. Soc. Jpn. 69 (2000) 3762.

[‡]Yamauchi et al. J. Phys. Soc. Jpn. 68 (1999) 2057

[§]Onodera et al. J. Phys. Soc. Jpn. 68 (1999) 2526.